Cardiac-directed parvalbumin transgene expression in mice shows marked heart rate dependence of delayed Ca2+ buffering action.
نویسندگان
چکیده
Relaxation abnormalities are prevalent in heart failure and contribute to clinical outcomes. Disruption of Ca2+ homeostasis in heart failure delays relaxation by prolonging the intracellular Ca2+ transient. We sought to speed cardiac relaxation in vivo by cardiac-directed transgene expression of parvalbumin (Parv), a cytosolic Ca2+ buffer normally expressed in fast-twitch skeletal muscle. A key feature of Parv's function resides in its Ca2+/Mg2+ binding affinities that account for delayed Ca2+ buffering in response to the intracellular Ca2+ transient. Cardiac Parv expression decreased sarcoplasmic reticulum Ca2+ content without otherwise altering intracellular Ca2+ homeostasis. At high physiological mouse heart rates in vivo, Parv modestly accelerated relaxation without affecting cardiac morphology or systolic function. Ex vivo pacing of the isolated heart revealed a marked heart rate dependence of Parv's delayed Ca2+ buffering effects on myocardial performance. As the pacing frequency was lowered (7 to 2.5 Hz), the relaxation rates increased in Parv hearts. However, as pacing rates approached the dynamic range in humans, Parv hearts demonstrated decreased contractility, consistent with Parv buffering systolic Ca2+. Mathematical modeling and in vitro studies provide the underlying mechanism responsible for the frequency-dependent fractional Ca2+ buffering action of Parv. Future studies directed toward refining the dose and frequency-response relationships of Parv in the heart or engineering novel Parv-based Ca2+ buffers with modified Mg2+ and Ca2+ affinities to limit systolic Ca2+ buffering may hold promise for the development of new therapies to remediate relaxation abnormalities in heart failure.
منابع مشابه
Cardiac-directed parvalbumin transgene expression in mice shows marked heart rate dependence of delayed Ca buffering action
Day SM, Coutu P, Wang W, Herron T, Turner I, Shillingford M, LaCross NC, Converso KL, Piao L, Li J, Lopatin AN, Metzger JM. Cardiac-directed parvalbumin transgene expression in mice shows marked heart rate dependence of delayed Ca buffering action. Physiol Genomics 33: 312–322, 2008. First published March 11, 2008; doi:10.1152/physiolgenomics.00302.2007.—Relaxation abnormalities are prevalent i...
متن کاملInduced overexpression of Na+/Ca2+ exchanger transgene: altered myocyte contractility, [Ca2+]i transients, SR Ca2+ contents, and action potential duration.
We have produced mice in which expression of the rat cardiac Na(+)/Ca(2+) exchanger (NCX1) transgene was switched on when doxycycline was removed from the feed at 5 wk. At 8 to 10 wk, NCX1 expression in induced (Ind) mouse hearts was 2.5-fold higher but protein levels of sarco(endo)plasmic reticulum Ca(2+)-ATPase, alpha(1)- and alpha(2)-subunits of Na(+)-K(+)-ATPase, phospholamban, ryanodine re...
متن کاملIncreased cardiac adenylyl cyclase expression is associated with increased survival after myocardial infarction.
BACKGROUND Cardiac-directed expression of adenylyl cyclase type VI (AC(VI)) in mice results in structurally normal hearts with normal basal heart rate and function but increased responses to catecholamine stimulation. We tested the hypothesis that increased left ventricular (LV) AC(VI) content would increase mortality after acute myocardial infarction (MI). METHODS AND RESULTS Transgenic mice...
متن کاملAugmentation of cardiac contractility with no change in L-type Ca2+ current in transgenic mice with a cardiac-directed expression of the human adenylyl cyclase type 8 (AC8).
The beta-adrenergic cascade is severely impaired in heart failure (HF), in part because of a reduction in the activity of the two dominant cardiac adenylyl cyclase (AC) isoforms, AC5 and AC6. Hence, cardiac-directed AC overexpression is a conceivable therapeutic strategy in HF. In this study, we explored the consequences at the cellular and organ level of a cardiac-directed expression of the hu...
متن کاملDoxycycline inducible expression of SERCA2a improves calcium handling and reverts cardiac dysfunction in pressure overload-induced cardiac hypertrophy.
Delayed cardiac relaxation in failing hearts has been attributed to reduced activity and/or expression of sarco(endo)plasmic reticulum Ca2+-ATPase 2a (SERCA2a). Although constitutive overexpression of SERCA2a has proven effective in preventing cardiac dysfunction, it is unclear whether increasing SERCA2a expression in hearts with preexisting hypertrophy will be therapeutic. To test this hypothe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiological genomics
دوره 33 3 شماره
صفحات -
تاریخ انتشار 2008